

Variedad para un rectificado perfecto

El empleo de herramientas abrasivas de altas prestaciones es, hoy en día, un factor importante para el funcionamiento y la rentabilidad de productos en prácticamente todos los sectores industriales. El progreso en el desarrollo de herramientas va parejo con una optimización continua de las propiedades de los abrasivos que distribuimos en todo el mundo desde hace más de 80 años bajo la marca **ATLANTIC**.

ATLANTIC es su socio competente para la producción, orientada al servicio y al cliente, de abrasivos aglomerados de todos los tipos (corindón, carburo de silicio, corindón sinterizado, diamante y nitruro de boro cúbico) con aglomerantes de tipo resinoide y cerámico.

Más posibilidades – de la A a la Z en millones de variantes


Desde la industria del automóvil, pasando por la industria de acero y rodamientos hasta la industria auxiliar, se utilizan herramientas abrasivas **ATLANTIC.** Según el perfil de requisitos se consiguen altas prestaciones de arranque de viruta y acabados superficiales de calidad con las herramientas abrasivas **ATLANTIC.**

A día de hoy, la empresa fabrica unos 40.000 productos básicos sobre los cuales se pueden realizar multitud de variaciones

Capacidad principal

Los diversos requisitos de aplicación de los abrasivos no suelen permitir aferrarse a especificaciones válidas con carácter general. La especificación se elabora específicamente a la medida del perfil de requisitos.

- Muelas abrasivas y segmentos
- Herramientas de diamante y CBN
- Herramientas de bruñir y de superacabado

Índice de contenidos

Bruñido de largo recorrido – de corto recorrido	4
Método de identificación – Tipo de grano	5
Identificación del tamaño de grano	6
Durezas – Método de prueba de dureza	7
Aglomerante – Tipos de impregnación – Refrigerante	8

Potente en superacabado (corto recorrido)

Para el mecanizado de precisión y final, Atlantic ofrece las herramientas de bruñido y superacabado **ATLANTIC**, que no sólo producen las superficies más finas y/o acabados definidos con exactitud y respetando las medidas y la exactitud de las formas, sino que también garantizan buenas prestaciones de arranque de viruta.

El bruñido (largo recorrido)

En el premecanizado de las piezas de trabajo aparecen fallos de forma que sólo se pueden eliminar mediante bruñido. En el bruñido se nivelan los desniveles (montes y valles) mediante la fricción continua de superficies entre la pieza de trabajo y la piedra de bruñir.

Los fallos de redondez se corrigen rectificando la pieza con la piedra de bruñir. Las superficies bruñidas poseen un elevada superficie de deslizamiento y son extraordinariamente durables y resistentes al desgaste.

Piedras de bruñir para bruñido de largo recorrido

Piedras de bruñir para superacabado

Piedras de bruñir para acabado de aros exteriores de rodamientos

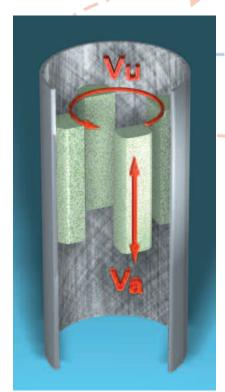
Selección de piedras de bruñir	9
Aplicaciones	10
Sistemas de gestión certificados	11
Formas de piedra de bruñir	12/13

Bruñido de largo recorrido - superacabado

Bruñido de largo recorrido

La secuencia de trabajo del bruñido de carrera larga se caracteriza por dos movimientos que se solapan.

- El movimiento giratorio de la herramienta bruñidora V_u
- 2. El movimiento lineal de la herramienta bruñidora Va


Por el cambio de sentido de la carrera se produce la intersección de las marcas de mecanizado que generan el típico rectificado en estrías cruzadas con el ángulo de estrías cruzadas α .

Bruñido de carrera larga Velocidad axial V_a Velocidad periférica V_u Velocidad de corte V_S

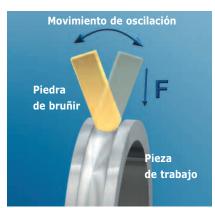
$$V_s = \sqrt{V_a^2 + V_u^2}$$

$$\frac{\Omega}{2} = \arctan \frac{V_a}{V_u}$$

Ángulo de estrías cruzadas α	30°	45°	60°	90°
Velocidad de carrera	1	1	1	1
Velocidad periférica	3,7	2,4	1,75	1

Superacabado

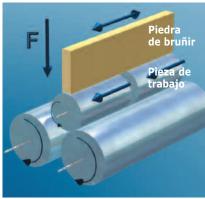
El bruñido de carrera corta (también llamado superacabado) se diferencia del bruñido de carrera larga por la longitud de carrera y la frecuencia. Debido al método de rectificado se compensan en buena medida las ondulaciones y fallos de forma circular que resultan del mecanizado previo. Gracias a las calidades producidas se pueden obtener superficies de contacto elevadas esenciales para componentes sometidos a grandes cargas.


Acabado con muelas de vaso

Una muela de vaso de bruñido es una herramienta abrasiva de pared delgada para obtener la microgeometría y macrogeometría requeridas así como la máxima calidad de superficie. Los tamaños de grano utilizados se encuentran, para el bruñido de carrera corta, en el rango de grano 220 a 2000.

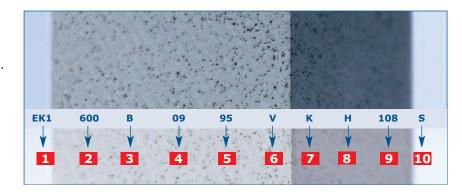
Como abrasivo seutiliza principalmente el corindón blanco o carburo de silicio verde en aglomerante cerámico. Un tratamiento de azufre, entre otros, puede elevar la rentabilidad.

Sectores típicos de aplicación de boquillas de bruñido son:


- ⇒ Válvulas esféricas
- ⇒ Prótesis de cadera
- ⇒ Superficies laterales de engranes
- ⇒ Levas

Acabado de pista exterior

Acabado con muelas de vaso


Barras de amortiguador

Método de marcado - Grano tipo

Marcado *

Un código alfanumérico identifica las herramientas abrasivas **ATLANTIC**. Gracias a una conjunto de procesos complementarios se garantiza la identificación. La documentación de los datos garantiza la trazabilidad y posibilidad de reproducir productos similares **ATLANTIC**.

- Materiales abrasivos
- Tamaño de grano
- Combinación de grano*
- 4 Estructura
- 5 Dureza

- 6 Clase de aglomerante
- **7** Tipo de aglomerante
- 8 Nº de acabado
- 9 Nº tejido*
- 10 Impregnación*
 - * Estos datos son opcionales, es decir, no se indican en todas las calidades

Materiales abrasivos

Se utilizan como materiales abrasivos casi exclusivamente materiales duros cristalinos de fabricación sintética. Los materiales abrasivos convencionales más utilizados son el corindón (óxido de aluminio) y el carburo de silicio.

Corindón fundido

El corindón es un óxido de aluminio (Al_2O_3) cristalino y se divide, por pureza creciente, en corindón normal, corindón semipuro y corindón puro. El corindón normal y semipuro se obtiene por fundición de bauxita calcinada y corindón puro de alúmina pura en el horno eléctrico de arco, a unos $2.000\ ^{\circ}$ C. Por medio de diversos aditivos y un enfriado determinado, se varía la viscosidad del corindón. A mayor proporción de Al_2O_3 , mayor será la dureza y la acritud del corindón.

Corindón sinterizado microcristalino

Los corindones sinterizados microcristalinos se distinguen de los corindones fundidos en su fabricación y propiedades. Por su proceso especial de fabricación, en el corindón sinterizado se forma una estructura granular especialmente homogénea y finamente cristalina.

La estructura finamente cristalina sólo permite la aparición de pequeñas partículas en caso de desgaste granular creciente – de esta forma, se aprovecha al máximo el grano abrasivo.

Carburo de silicio

El carburo de silicio (SiC) es un producto puramente sintético y se obtiene en el horno eléctrico de resistencia a partir de arena de sílice y coque a unos 2.200 °C. Se distinguen el carburo de silicio verde y el negro con viscosidad ligeramente creciente.

El carburo de silicio es más duro, más frágil y de cantos más vivos que el corindón. El carburo de silicio se aplica mayoritariamente con materiales duros y frágiles como fundición gris y metal duro así como con metales no férricos.

Corindón puro 99,5 % Al₂O₃ Notación abrev.: EK 1

Corindón sinterizado microcristalino Notación abrev.: EB o EX

Carburo de silicio verde 98-99,5 % SiC Notación abrev.: SC 9

Identificación de tamaños de grano

Tamaños de grano

Para los productos **ATLANTIC** se utilizan tamaños de grano de abrasivos conforme a DIN ISO 6344. Los granos abrasivos se clasifican mediante cribas normalizadas en distintas categorías de tamaño.

El tamaño de grano nominal se obtiene por el número de mallas de la criba por pulgada (mesh). Así, por ejemplo, el número 60 significa que la criba respectiva presenta 60 mallas por pulgada. Cuanto mayor sea el número, tanto más fino es el grano abrasivo. A partir de un tamaño de grano de 240, el grano abrasivo deja de clasificarse por cribas normalizadas, sino que se hace por un complejo sistema de sedimentación.

La comparativa internacional

En la tabla siguiente se presenta la comparativa de los distintos estándares internacionales.

Identificación de	ntificación de Diámetro medio de grano en µm			
tamaño de grano (mesh)	DIN ISO 6344	JIS	ANSI	
60	270	270	270	
70	230		230	
80	190	190	190	
90	160		160	
100	140	165	140	
120	120	120	120	Macrogranos
150	95	95	95	
180	80	80	80	
200	70			
220	60	70	70	
240	45	57	57	
280		48	37	
320	29	40	29	
360		35	23	
400	17	30	17	
500	13	25	13	
600	9	20	9	
700		17		
800	7	14	7	Microgranos
1000	5	12	4	
1200	3	10	3	
1500	2	8		
2000	1	7		
2500		5		
3000		4		
4000		3		
6000		2		
8000		1		

Durezas - Proceso de prueba de dureza

Dureza de las piedras de bruñir

La dureza identifica la resistencia con la que el aglomerante mantiene el grano dentro del cuerpo abrasivo. Para piedras de bruñir en aglomerante cerámico y un grano 150 o más fino, la dureza se identifica con un número, donde **200** significa una piedra de bruñir **extremadamente blanda** y **0 extremadamente dura**. Para granos de 120 y más gruesas, la dureza de la piedra de bruñir se identifica de forma análoga a la de las muelas abrasivas, usando una letra del alfabeto desde la «A» (muy blanda) hasta la «Z» (muy dura).

La prueba de dureza

La clasificación de las piedras de bruñir en niveles de dureza es considerablemente más fino en comparación con las muelas abrasivas. Las piedras de bruñir con un tamaño de grano

de 150 o más fino se someten a un proceso de prueba específico. En este proceso de prueba Rockwell modificado se genera una presión esférica sobre el bloque de piedra de bruñir bajo unas condiciones definidas. El valor de dureza se obtiene a partir de la profundidad de la huella de la esfera. Cuanto mayor sea la cifra, más blanda es la piedra.

Dureza de la piedra

Identificación	Dureza mínima	Dureza máxima
Tamaño de grano 150 o más fino	200	0
Tamaño de grano 120 o más grueso	Α	Z

Prueba de dureza

Diámetro de la e	esfera 5 mm
Carga previa	98,1 N (10 kg)
Carga principal	490,5 N (50 kg)

El método Grindo-Sonic

Con el método Grindo-Sonic se determina la vibración natural del cuerpo abrasivo mediante medición de frecuencia. Aquélla depende de las propiedades físicas y de la dimensión. A partir de los valores medidos, se

convierte al valor del módulo E que sirve como magnitud indicativa para estimar la dureza del cuerpo abrasivo.

Aglomerante - Tipos de impregnación - Refrigerante

Aglomerante

El aglomerante cerámico se compone de caolín, feldespato, cuarzo y borosilicatos. Mediante la distinta composición con estos materiales así como un tratamiento térmico exacto durante la fabricación se obtienen propiedades definidas relativas a la técnica de abrasión. Gracias a una multitud de aglomerantes cerámicos es posible adaptar la piedra de bruñir exactamente al proceso de mecanizado correspondiente. El aglomerante tiene la misión de mantener el grano en la piedra de bruñir hasta que se haya despuntado por el proceso de corte. Entonces,

el aglomerante debe soltar el grano de forma que se aplica un nuevo grano, afilado. Las piedras de bruñir se fabrican mayoritariamente en aglomerante cerámico.

Para casos de aplicación especiales se emplean también piedras de bruñir con aglomerante resinoide.

Piedras de bruñir con grafito

Las piedras de bruñir con grafito se fabrican exclusivamente con corindón blanco en aglomerante cerámico y en los tamaños de grano 400-1000. La propiedad característica de estas piedras de bruñir consiste en que el grafito está alojado en la matriz aglomerante cerámica. Así se consigue tanto una gran capacidad de corte como una elevada calidad de superficie. Las principales áreas de aplicación son la industria de rodamientos, amortiguadores y del acero.

Tipos de impregnación

En las piedras de bruñir sulfuradas o enceradas se forma una película deslizante entre la piedra de bruñir y la pieza de trabajo durante el mecanizado por bruñido. Con esto se obtienen las siguientes ventajas:

- ⇒ Superficies de calidad superior
- ⇒ Menor desgaste de la piedra de bruñir
- ⇒ Mejor poder de corte

Tipo impregn.	Identificación abrev.
Azufre	S
Cera	W

Las piedras de bruñir sulfuradas no se deben utilizar en el mecanizado de metales no férricos, ya que, bajo determinadas circunstancias, pueden producir descoloraciones en la superficie a mecanizar.

Refrigerante/filtrado

Para bruñir se emplean mayoritariamente aceites de bruñir poco viscosos (muy fluidos). La misma temperatura del aceite de bruñir puede influir en el resultado del mecanizado. Con un aceite de bruñir demasiado frío (p. ej. después de un fin de semana en invierno en una sala sin calefacción), la viscosidad aumenta. En verano y/o con una instalación refrigerante de poca capacidad, el aceite de bruñir se puede volver demasiado fluido por las altas temperaturas.

Como consecuencia de la dilatación térmica de la máquina y de la pieza de trabajo pueden surgir problemas con la tolerancia de las medidas. Las temperaturas ideales para los aceites de bruñir son de 20-25 °C. Para el mecanizado de precisión se debe

prestar atención a que haya un filtrado suficiente del aceite de bruñir. Si el filtrado es insuficiente, algunas partículas no filtradas pueden producir rayas profundas en la superficie. La industria ofrece una multitud de sistemas de filtrado.

Causa	Erecto		
Demasiado ⇒ frío	Alta viscosidad (poco fluido), Mala superficie		
Demasiado ⇒ caliente	Baja viscosidad (muy fluido), Errores en la medidas por dilatación térmica		
Insuficiente ⇒	Sin capacidad de corte, mala superficie		
Ideal: 20-25 °C de temperatura			

Efecto

Cauca

Ideal: 20-25 °C de temperatura del aceite de bruñir

Selección de piedras de bruñir

Selección de piedras de bruñir

La gran variedad de aplicaciones y máquinas, así como de calidades de superficie que se persiguen, hacen imposible dar recomendaciones de validez general.

En las tablas siguientes se detallan aplicaciones con éxito de piedras de bruñir **ATLANTIC**.

Bruñido de carrera larga

Material	Abrasivos
Acero, no aleado, baja resistencia	Corindón normal, corindón semipuro
Acero, endurecido, alta resistencia	Corindón puro
Acero, nitrurado	Carburo de silicio
Cromo duro	Corindón puro
Materiales fundidos	Carburo de silicio

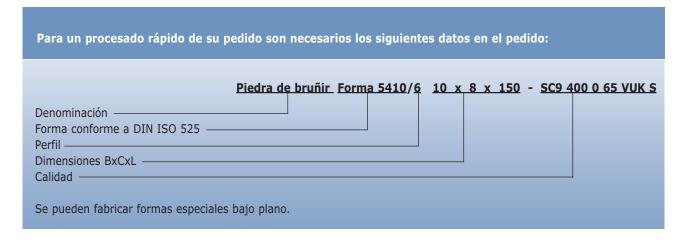
Superacabado

Material	Abrasivos
Acero, endurecido, alta resistencia	Corindón puro/carburo de silicio
Acero, nitrurado	Corindón puro
Cromo duro	Corindón puro
Materiales fundidos	Carburo de silicio
Metales no férricos	Carburo de silicio

Superacabado con muelas de vaso

Pieza de trabajo	Material		Esp	ecificació	n AT	LAN	TIC
Caras de engranes	Acero cementado	Acero cementado		600 -09 -	140	VUE 1	.29S
Tobera de inyección Asiento de la super-	Acero cementado	1ª estación	SC9	800 -08-	115	VUC	S
ficie de contacto		2ª estación	SC9	1000 -09	-90	VUB	S
Prótesis de cadera	Acero de alta aleación	1ª estación	SC9	320 - 4	-55	VDF	8 S
		2ª estación	SC9	600 - 0	-50	VUF	8 S
		3ª estación	SC9	800-04	-60	VUK4	89 S
		4ª estación	SC9	1000 -06	-75	VUF	S

Bruñido de carrera larga


Pieza de trabajo	Mecanizado	Especificación ATLANTIC
Casquillo cilíndrico	Piedra de desbaste	SC7 100 - G16 VOX 237
Camión	Piedra de acabado	SC7 150B - 00 - 200 VOX 209
Casquillo cilíndrico	Piedra de desbaste	Piedra de diamante
Automóvil	Piedra de semi-	SC9 120 - E12 VOS 158 o
	desbaste	SC7 150B - 0 - 65 VOS 159 S
	Piedra del plateau	SC7 400 - 0 - 40 VUL S
Cilindro hidráulico	Piedra de desbaste	EK1 120 - I7 VKK S
	Piedra de semidesbaste	SC9 400 - 0 - 65 VUK S
	Piedra de acabado	EK1 800 - 22 - 70 VBGR1 S
Cromo duro		EK1 120 - D11 VKF 58 S

Aplicaciones

Bruñido de carrera corta (acabado)

Industria de rodamientos		Especificación ATLANTIC
Acabado de pistas	2 estaciones	
de rodamiento de bolas	1. estación	EK1 800 - 06 - 135 VKH S
	2. estación	SC9 1200 - 00 - 75 VUF 4
Acabado de pistas	1. estación	EK1 400 - 0 - 110 VKH S
de rodamiento de rodillos	2. estación	SC9 600 - 0 - 80 VUC S
Acabado pasante	Estación 1-3	EK1 600 - 09 - 95 VKH S
de rodillos cilíndricos	Estación 4-5	SC9 800 - 07 - 80 VUF
(6 estaciones)	Estación 6	Superfino N 6000
Industria del automóvil		Especificación ATLANTIC
Acabado pasante de		
vástagos de amortiguador		
(Después del cromado)	Estación 1	EK1 400 - 0 - 110 VKH S
	Estación 2-3	EK1 400 - 07 - 175 VKH S
	Estación 4-5	EK1 600 - 03 - 200 VKH S
	Estación 6-7	EK1 800 - 03 - 200 VKH S
	Estación 8	EK1 1000 - 02 - 140 VLO S
Árbol de levas (fundición)		SC9 800 - 05 - 35 GVYY
Cigüeñal (fundición)		EK1 800 - 08 - 105 VLD 4 S
Cigüeñal (acero)		EK1 1000 - 08 - 45 VLO 109 S

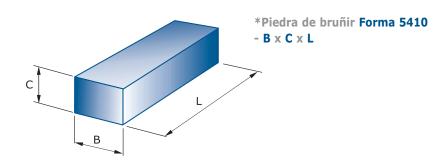
Ejemplo de pedido:

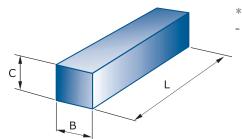
Sistemas de gestión certificados

Los sistemas de gestión certificados documentan nuestra organización secuencial, orientada a la información, que garantiza la calidad, el respeto al medio ambiente y la seguridad laboral.

ATLANTIC trabaja conforme a DIN EN ISO 9001 y DIN EN ISO 14001. La inspección regular de todos los criterios de calidad en las distintas áreas la proporcionan auditorías internas.

Los estándares elevados garantizan un trabajo de calidad y precisión. Calidad con la que cuenta y con la que puede hacer planes.

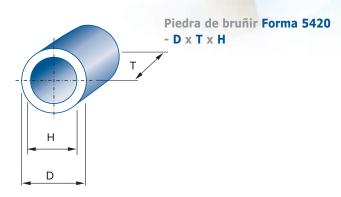


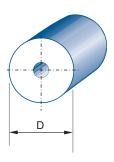


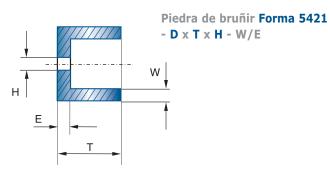
Formas de piedra de bruñir

Fabricación según diagrama del cliente

Las formas de piedras de bruñir están normalizadas conforme a ISO 525. Además, estas formas están provistas con perfiles. A continuación, se detallan algunos perfiles posibles. Los perfiles no detallados se fabrican según plano del cliente.




*Piedra de bruñir Forma 5411

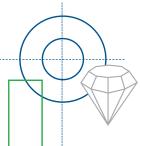

- **B** x **C** x **L**

*) Perfiles de piedra de bruñir viables conforme a instalación (ejemplo: forma 5410/6)

Formas de piedra de bruñir

Formas habituales de piedras de bruñir Formas especiales para el superacabado 0 Además de los perfiles detallados, existe un número de formas diferentes en cada área de aplicación cuya fabricación se lleva a cabo bajo plano. 1 2 3 2 3 5 6 6 8

ATLANTIC GmbH


Gartenstrasse 7-17 53229 Bonn, Alemania

Tel. + 49 (228) 408-0 Fax + 49 (228) 408-290

e-mail: info@atlantic-bonn.de www.atlantic-bonn.de

Gama de suministro - Muelas abrasivas - Piedras de bruñir

Los resultados deseados se obtienen gracias a los abrasivos seleccionados de forma óptima y a las especificaciones individuales del programa de acabado **ATLANTIC**.

Fabricamos:

- Muelas abrasivas y segmentos
- Herramientas de bruñir y de superacabado
- De 2 a 1250 mm de diámetro
- En corindón y carburo de silicio
- En diamante y CBN
- En aglomerante cerámico y resinoide
- Hasta grano 2000 y en calidad superfina para obtener las superficies más finas

En todos los tamaños y formas convencionales. Se fabrican formas especiales por deseo del cliente bajo plano.

Rectificado plano

Rectificado plano de perfil

Rectificado cilíndrico exterior

Rectificado cilíndrico de interiores

Rectificado centerless

Rectificado de barras

Rectificado de cilindros

Rectificado de roscas

Rectificado de engranes

Rectificado de cigüeñales

Rectificado de árboles de levas

Rectificado de bolas

Rectificado de herramientas

Rectificado de pistas de rodadura

Rectificado de agujas hipodérmicas